10 research outputs found

    LAP2 Is Widely Overexpressed in Diverse Digestive Tract Cancers and Regulates Motility of Cancer Cells

    Get PDF
    BACKGROUND: Lamina-associated polypeptides 2 (LAP2) is a nuclear protein that connects the nuclear lamina with chromatin. Although its critical roles in genetic disorders and hematopoietic malignancies have been described, its expression and roles in digestive tract cancers have been poorly characterized. METHODS: To examine the expression of LAP2 in patient tissues, we performed immunohistochemistry and real-time PCR. To examine motility of cancer cells, we employed Boyden chamber, wound healing and Matrigel invasion assays. To reveal its roles in metastasis in vivo, we used a liver metastasis xenograft model. To investigate the underlying mechanism, a cDNA microarray was conducted. RESULTS: Immunohistochemistry in patient tissues showed widespread expression of LAP2 in diverse digestive tract cancers including stomach, pancreas, liver, and bile duct cancers. Real-time PCR confirmed that LAP2β is over-expressed in gastric cancer tissues. Knockdown of LAP2β did not affect proliferation of most digestive tract cancer cells except pancreatic cancer cells. However, knockdown of LAP2β decreased motility of all tested cancer cells. Moreover, overexpression of LAP2β increased motility of gastric and pancreatic cancer cells. In the liver metastasis xenograft model, LAP2β increased metastatic efficacy of gastric cancer cells and mortality in tested mice. cDNA microarrays showed the possibility that myristoylated alanine-rich C kinase substrate (MARCKS) and interleukin6 (IL6) may mediate LAP2β-regulated motility of cancer cells. CONCLUSIONS: From the above results, we conclude that LAP2 is widely overexpressed in diverse digestive tract cancers and LAP2β regulates motility of cancer cells and suggest that LAP2β may have utility for diagnostics and therapeutics in digestive tract cancers

    LAP2β regulates migration of diverse digestive tract cancers cells.

    No full text
    <p>Boyden chamber assay (A-G) and wound healing assay (H, SNU638 cells) were used to measure migration of cancer cells. LAP2β siRNA significantly inhibited FBS- or EGF-induced migration compared to SCR siRNA in SNU638 (A, C), PANC1 (A, D) or other digestive tract cancer cells (G). Overexpression of LAP2β in SNU638 (B, E) or PANC1 (B, F) cells significantly increased migration compared to the control vector (B, E, F). EGF (100 ng/ml) or 10% FBS was used to induce chemotaxis. Mitomycin C (0.01 µg/ml) was added to remove effects of proliferation. Two days after transfection with 100 nM LAP2β siRNA or 100 nM scrambled (SCR) siRNA, both migration assays were performed. Four or six hours later after addition of EGF or FBS into Boyden chamber assay, cells were fixed. After a scratch in wound healing assay, migrated cells were fixed at the indicated times. Representative staining of migrated cells was presented (A, B). Migrated cells were counted and the data are presented as graphs (C-G). Data are the means±SD of three independent experiments in triplicate (C-G, *P<0.01, Student’s t-test).</p

    Role of LAP2β in the proliferation of cancer cells.

    No full text
    <p>Western blotting (A, B) and real-time PCR (C, D) were used to determine the efficiency of knockdown (A, C) or overexpression (B, D) of LAP2β in SNU638 or PANC1 cells. Data are the means±SD of three independent experiments (*P<0.01, Student’s t-test). (E) Effect of LAP2β knockdown on proliferation of cancer cells. WST-1 assay was used to measure proliferation of cancer cells in the presence of 10% FBS. Five days after transfection with by 100 nM LAP2β siRNA or 100 nM scrambled (SCR) siRNA, WST-1 proliferation assay was performed. (F) Effect of LAP2β overexpression on proliferation of cancer cells. WST-1 assay was conducted in SNU638 or PANC1 cells overexpressing LAP2β gene or control vector. Data are the means±SD of three independent experiments in quintuplicate (*P<0.01, Student’s t-test).</p

    LAP2β regulates invasion of gastric and pancreatic cancer cells.

    No full text
    <p>Matrigel invasion assay was used to measure invasion of cancer cells. Knockdown of LAP2β significantly inhibited FBS- and EGF-induced invasion compared to SCR siRNA in SNU638 (A, C) or PANC1 (A, D) cells. Overexpression of LAP2β in SNU638 (B, E) or PANC1 (B, F) cells significantly increased invasion compared to the control vector. EGF (100 ng/ml) or 10% FBS was used to induce invasion. Mitomycin C (0.01 µg/ml) was added to remove effects of proliferation. Two days after transfection with 100 nM LAP2β siRNA or 100 nM scrambled (SCR) siRNA, the invasion assays were performed. Representative staining of invaded cells was presented (A, B). Invaded cells were counted and the data are presented as graphs (C-F). Data are the means±SD of three independent experiments in triplicate (C-F, *P<0.01, Student’s t-test).</p

    LAP2β enhances metastatic efficiency in a xenograft model.

    No full text
    <p>Gastric cancer cells overexpressing LAP2β gene or control vector were injected into spleen and metastasis to liver was examined 5 weeks later. Metastatic tumor regions were indicated by dotted circles. Representative immunostainings with anti-LAP2, anti-IL6, anti-STAT3, and anti-MARCKS antibodies, and H&E stainings in a liver metastasis are presented. Asterisk indicates tumor lesions. Scale bar, 50 µm.</p

    LAP2 is overexpressed in diverse digestive tract cancers.

    No full text
    <p>(A) Immunohistochemical staining showed overexpression of LAP2 in diverse digestive tract cancers including pancreas, liver, stomach and bile duct cancers. Note overexpression of LAP2 in metastatic cancer cells. Scale bar, 200 µm. (B) Overexpression of LAP2β in gastric cancer tissues was examined by real-time PCR using specific primers for the β-isoform. GAPDH was used to normalize all data.</p

    LAP2β-induced gene expression.

    No full text
    <p>Gene expression between gastric cancer cells overepxressing LAP2β gene or control vectors were compared by cDNA microarray. Real-time PCR was used to confirm the LAP2β-induced change in gene expression of <i>MARCKS, STAT3 and IL-6</i> in SNU638 cells. The data are plotted as fold changes compared with mock cells. Data are the means±SD of three independent experiments in quintuplicate (*P<0.01, Student’s t-test).</p
    corecore